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Abstract

The charge form factors of 3H,® He and 4He are calculated using the Monte Carlo
method and variational ground state wave functions obtained for the Argonne two-nucleon
and Urbana-VII three-nucleon interactions. The model for the charge density operator
contains the two-body exchange contributions of longest range. With some spread due to
the uncertainty in the electromagnetic form factors of the nucleon the calculated charge
form factors are in good agreement with the empirical values over the whole experimentally

covered range of momentum transfer.

1. Introduction

We have recently shown that an excellent description of the measured magnetic form
factors of 3H and 3He can be obtained by using the Argonne v;4 potential 1] and the
Urbana-VII three-nucleon interaction [2] for the construction of the wave functions and
the associated exchange current density operators [3]. We here continue this investigation
to study the charge form factors of these nuclei and of the related nucleus * He with the
same interaction model.

The charge form factors of > He and *He have been measured up to momentum transfer
values of 8.6 fm™! (1.7 GeV /c) [4]. Their structure at high values of momentum transfer is
in qualitative agreement with calculations performed with nonrelativistic wave functions,
with or without two-body effects [5,6]. We shall here show that, with the Argonne v;4 po-
tential model and the usual two-body corrections that correspond to the meson exchange
mechanisms of longest range, we obtain charge form factors for these nuclei that are in
essentially quantitative agreement with the empirical values (within the uncertainty limits
set by the nucleon electromagnetic form factors), except for a remaining small discrepancy
Jjust after the first zero in the charge form factor of the « particle. This result has several
implications. The first and most important one is the remarkable success of the nonrel-
ativistic description even at the very large values of momentum transfer considered (1.7
GeV/c). The second is the indication that the model for the exchange charge density is bet-
ter than one a priori should expect. The third is the remarkable quality of the Argonne v 4
interaction, with which it now appears possible to explain all the elastic electromagnetic
structure functions of the bound three- and four-nucleon systems.

The structure of the exchange charge operator, in contrast to that of the exchange
current operator, is associated with several uncertainty factors. While main parts of the
exchange current are linked to the form of the nucleon-nucleon interaction through the

continuity equation, the most important exchange charge density operators are model



dependent and may be viewed as relativistic corrections. Until a systematic method for
a simultaneous nonrelativistic reduction of both the interaction and the electromagnetic
current operator is developed, the definite form of the exchange charge operators remains
uncertain, and one has to rely on perturbation theory. We shall here consider the exchange
charge operators associated with pion, p-meson and w-meson exchanges. The form for the
pion exchange charge density is essentially that first introduced in ref. {7]. The p-meson
exchange charge operator is that derived in ref. (8], whereas the w-meson exchange charge
operator is the one first obtained in ref. [9]. In addition we consider the p7ry and wny
exchange current mechanisms in which the virtual photon couples to the pion-vector-meson
vertex. The former one of these exchange charge mechanisms is better established, as it
can be linked, within the framework of the topological soliton or Skyrme model [10,11],t0
the chiral anomaly.

In the construction of the meson exchange charge density operators, the short range
(or high momentum) behaviour of the meson-nucleon vertices represents a factor of uncer-
tainty. To avcid the need for ad hoc cut-off parameters at the meson-nucleon vertices we
shall here construct the dressed pion and p-meson propagators directly from the nucleon-
nucleon interaction by the method developed in ref. {12]. While this does not greatly change
the numerical results from those obtained with free meson propagators with vertex form
factors, it reduces the model dependence of the calculation. We shall also in the descrip-
tion of the exchange charge operators review their derivation in more detail than usual, as
different versions of these operators have appeared in the literature.

This paper is divided into 6 sections. In section 2 we briefly illustrate the method
of constructing the wave functions, and discuss the form factors obtained in the impulse
approximation. In section 3 we describe the two-body exchange contributions to the charge
density operator. In sections 4 and 5 we present the results for the charge form factors of
3H,3He and *He. Finally section 6 contains a concluding discussion.

2. The charge form factors in the impulse approximation

In the impulse approximation the charge form factors are obtained as the appropri-
ate nuclear matrix elements of the single-nucleon charge operator, for which we use the

expression [13]
2
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Here ¢'is the momentum transfer to the nucleon, P the sum of the initial and final nucleon
momenta, and m the nucleon mass. The first term in the charge density operator is the
electric form factor with the Darwin-Foldy correction and the second is the so called ‘spin-
orbit ’ term. The latter represents only a small correction, as will be shown explicitly
below.

The nuclear wave functions required for the matrix elements of the charge density
operator (2.1) are constructed by the variational Monte Carlo method [14] from a Hamil-
tonian containing the Argonne vy4 potential [1], and the Urbana model VII three-nucleon
interaction [2] { this last term takes into account excitation of intermediate A3z resonance
configurations ). These wave functions give binding energies, charge radii and asymptotic
D- to S-state ratios in the d-p and d-n channels of 3He and 2H, and in the d-d channel
of the « particle, which are quite close to the empirical values. Their accuracy has been
further tested by direct comparison with results obtained with exact Faddeev [15] and
Green’s Function Monte Carlo [16] wave functions, as, for example, those for the two-body
correlation functions [17,18], and the longitudinal energy-weighted sum rule [19]. In ref.
[3] we have recently shown that by using the Argonne v14 model to construct the wave
functions and the exchange current density operator one obtains magnetic form factors
of 3H and ®He that are in excellent agreement with the empirical values over the whole
measured range of momentum transfer values.

The evaluation of the nuclear matrix elements with the variational wave functions is
carried out by the Monte Carlo method developed in refs. (3,14], without any approxima-
tion. This method is very convenient in that it treats numerically both the spin and isospin
structure of the integrands ( in addition to their spatial dependence ) , and as & conse-
quence the evaluation of the exchange charge operators described in the following section
is no more complicated than the evaluation of the matrix elements of the single-nucleon

operators.

3. The exchange charge density operator

The exchange charge density operators can be divided into two classes. The first is
formed of the effective operators that represent non-nucleonic degrees of freedom, as e.g.
nucleon-antinucleon pairs (7] or nucleon-resonances [20,21], and which arise when those
degrees of freedom are eliminated from the state vector. The second are genuine dynamical
exchange charge effects that appear even in a description, that would include the explicit
non-nucleonic excitations in the state vector. In a description based on meson exchange

mechanisms these involve electromagnetic transition couplings between different mesons.



The proper forms of the former operators depend on the method of eliminating the non-
nucleonic degrees of freedom, and therefore evaluating their matrix elements with the
usual nonrelativistic nuclear wave functions represents only the first approximation to &
systematic reduction [22]. We shall first consider the exchange charge operators of this
class,to which belongs the longest range pion exchange charge operator.

We first consider the pion exchange charge operator that is associated with the ‘seagull
’ type Feynman diagrams in fig. 1. To obtain the corresponding exchange charge operator,
one may begin by considering the low energy limit of the relativistic Born diagram in fig.

2. If this is evaluated with the usual pseudovector pion-nucleon coupling
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where ¢ is the isodoublet nucleon field, q?; the isovector pion field, fr the pion-nucleon
pseudovector coupling constant (f2/4x =~.081) and m, the pion mass, one obtains the

charge operator[23]
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Here ¢ is the momentum transfer to the nucleus and k; the momentum transferred by
the pion to the second nucleon (fig. 2). In (3.2) v, (k) is the pion exchange potential (in
momentum space).

The first term in the expression (3.2) contains the nonrelativistic intermediate state
Green’s function and the one-pion-exchange potential. It is therefore contained in the
bound state matrix elements of the single- nucleon charge operator(i.e., in the impulse
approximation). The second term represents a part of the seagull diagram in fig. 1a, and
thus should be taken into account as an exchange charge density operator. The symmetrized
version of the pion exchange charge operatoi- that is obtained by combining the nonsingular
nonvanishing seagull terms from both diagrams in fig. 2 and those with the nucleon lines
exchanged is .
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Here the momentum variables k,, k; and 7 are defined as §= k; + k,.



The exchange charge operator (3.3) was first obtained by Kloet and Tjon 7], who con-
sidered the nonrelativistic reduction of component in the pion-photoproduction amplitude
that contains an intermediate nucleon-antinucleon pair, evaluated with the pseudoscalar
pion-nucleon coupling. No such pair terms appear here as we use the pseudovector coupling,
in which case the exchange charge operator appears as a seagull type diagram. Note that
in the original paper [7] there is an additional correction to the electromagnetic form factor
of the nucleon in eq. (3.3) that involves the Pauli form factor. This is a consequence of the
use of the pseudoscalar pion-nucleon coupling, which is inconsistent with the requirement
of chiral symmetry [24]. In the {proper) pseudovector coupling model the anomalous Pauli
term contributes a term that is smaller by a factor (v/c)? than the main term (3.3).

The exchange charge operator (3.3) represents a relativistic correction that arises
in the nonrelativistic reduction of the Born term in the pion nucleon photo-production
amplitude. The form of the operator does of course depend on the method of carrying
out the nonrelativistic reduction, and hence its use with conventional nonrelativistic wave
functions is based more on phenomenological success than on solid theoretical argument.

The effect of the pion exchange charge operator (3.3) is enhanced by the similar
operator that is associated with p-meson exchange. The p-meson exchange charge operator
can be derived in the same way as the pion exchange charge operator by considering the
nonrelativistic reduction of the virtual p-meson photoproduction amplitudes in two-body
diagrams of the form in fig. 2, and eliminating the singular term that represents an iteration
of the wave function. The complete form of the resulting operator is (8]

. 92(1 + k)2
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Here m, is the p-meson mass, g, the pNN vector coupling constant and < the pN N tensor
coupling constant ( ¢g3/47 = 0.55 and « = 6.6 [25] ).

The operator (3.4) may be viewed as a seagull type exchange operator (fig. 1) or as
an effective nonrelativistic representation of nucleon - antinucleon pair configurations that
bave been eliminated from the state vector. The diagrammatic interpretation is mainly a
question of convention, which depends on the organization of the nonrelativistic reduction.
To the order considered the operator is unique, except for some nonlocal corrections that
ere expected to be small [8].

The pion and p-meson exchange charge operators (3.3) and (3.4) contain coupling
constants and bare meson propagators, which are usually modified by ad hoc vertex form
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factors in order to take into account the finite extent of the nucleons. We shall here avoid
that uncertainty by constructing them directly from the nucleon-nucleon interaction model
(the Argonne v;4 potential) using the method developed in ref. [12]. This implies replacing
the pion- and p-meson propagators in egs. (3.3) and (3.4) by the Fourier transforms v (k)
and v'"(k) of the isospin dependent spin-spin and tensor components of the interaction
model [3] as
__jl 1
3m2ml + k32
_g(1+x)? 1
4m? m2 + k2

— Vps(k) = %[2u"(k) — v7T(k)], (3.5a)
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The replacements (3.5) are the ones required for the construction of an exchange current
operator that satisfies the continuity equation with the interaction model. We here apply
the replacement to the exchange charge operators as the generalized meson propagators
constructed in this way do take into account the nucleon structure in a way that is consis-
tent with the nucleon-nucleon interaction. An additional reason for using the construction
(3.5) is that it has been shown to lead to predictions for the magnetic form factors of the
trinucleons that are in excellent agreement with the empirical data [3].

The T=1 PS- and V-exchanges provide the largest contribution to the charge operator,
and fortunately contain no adjustable parameter. The other contributions which have been
considered,namely those associated with the w, pmv and wmy mechanisms, are relatively
smaller, and we use empirical coupling constants and vertex form factors to calculate them.

The w-meson exchange charge operator is given by:
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This operator can be derived in the same way as the p-meson exchange charge operator
(3.4) above, and may be viewed as a seagull type exchange operator of the type in fig. 1
with w instead of 7 exchange. For the wNN coupling constant g, we use the value 14.8
suggested by boson-exchange models for the nucleon-nucleon interaction [28].

All the exchange charge operators above belong to the first class of exchange opera-
tors, and appear as nonvanishing nonsingular seagull terms in the nonrelativistic reduction
of the virtual photoproduction amplitudes for the exchanged mesons. The exchange charge
operators that correspond to the pry and wm+ couplings shown in fig. 3 belong to the (sec-
ond) class of genuine dynamical exchange operators, which are associated with transverse
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four-vector currents. The pry exchange charge operator that corresponds to the diagram
in fig. 3 has the form [9,27]

&.1 °E1(€2 X Eg) . (El X Eg)
(m3 + k})(m2 + k3)

_ Ix90x19,(1 + x)
2mym,m
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Here gyx is the pry coupling strength for which we shall use the value 0.4 [28]. In line with
the usual vector meson dominance phenomenology we shall describe the electromagnetic
transition form factor of the pw+y vertex as a w-meson pole term:

1

0 = Ty

(3.8)
The corresponding wr+y exchange charge operator has the form

Pwr -

_frgusr';gw ( ){51‘51(52 XE;)-(El XEg)
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Here gun is the wx+y coupling strength. We shall take guny to have the value 0.68 [29],and

assume that the electromagnetic vertex form factor G,(g) has the form of a p-meson pole

term:
1

1 3.10
1 +q’/m3 ( )

Golg) =

The derivation of the px4 and wmy exchange charge operators is straightforward,
given the transition current matrix elements < V (k)|J,(0)|x(k) >, with V = p,w. The
general form of these current matrix elements is given e.g. in ref. [29]. More recently it
has been shown that the isoscalar pry exchange charge operator can also be derived from
the anomalous baryon current that carries the baryon charge in the topological soliton (or
Skyrme) mode] [10,11]. This derivation, which is independent of the detailed form of the
effective chiral Lagrangean in the soliton model, links the pr7 exchange current operator
to the chiral anomaly and makes its strength, if not the detailed form of the expression
(3.7), model independent.

In the w, pry and wry exchange charge operators the meson-nucleon vertices have
been taken to be pointlike. We shall take into account the finite extent of the nucleon
by modifying the free meson propagators in the above expressions by introducing high
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momentum cut-off factors of the conventional monopole form. The pion propagator in the
p7+y and wny exchange charge operators (3.7) and (3.9) are thus multiplied by a factor
(A2 —m2)/(A2 + ¢%). The vector meson propagators in the expressions (3.6), (3.7) and
(3.9) are multiplied by corresponding monopole factors with A, replaced by Ay and m,
by the corresponding vector meson mass. The mass scales of the cut-off factors do of
course represent free parameters. We shall here use the values A, = 1.2 GeV and Ay =2
GeV, which have been found to be reasonable in studies of the reaction #+d — pp, which
is dominated by two-body mechanisms [30]. The w,pry and wmy charge operators give
relatively small contributions to the charge form factors, and the results are not very
sensitive to the precise values of the A’s when these are taken to be larger than 1 GeV.
In addition to these two-body exchange charge density operators one may also consider
analogous three- and four-body exchange charge density operators. The most obvious such
higher rank charge operators, which involve rescattering of the exchanged pion and p-
mesons off intermediate nucleons, have been studied in ref. [8]. The conclusion in that
work was that once both pion and p-meson exchange mechanisms are taken into account,
the net contributions of the three- and four-body exchange charge operators to the charge
form factors of the bound three- and four-nucleon systems are small. The reason for this
relative insignificance is the strong cancellations between the pion- and p-meson exchange

terms.

4. The charge form factors of 3H and 3He

In figs. 4 and 5 we show the calculated and measured charge form factors of H and
3He. The data points in the figures are obtained from refs. [4,31-34]. The theoretical results
are obtained with the parametrization for the nucleon electromagnetic form factors given
in ref. [35] (‘5 parameter dipole fit ). The three-body wave functions used in the matrix
elements of the charge density operator are those obtained from the Argonne v;4 nucleon-
nucleon and Urbana-VII three-nucleon interactions. The calculated form factors for both
nuclei are in excellent agreement with the experimental data , except at the highest values
above 7 fm~!, where the form factor of 3He is slightly underpredicted. The important
role of the exchange charge density contributions above 3 fm~1 is evident, consistently
with what was found in earlier studies {36,37]. The small discrepancy at the very high
values of momentum transfer in the case of 3He (fig. 5) may be due to a number of causes:
missing relativistic corrections, three-body exchange charge density effects and finally the
uncertainties in the electromagnetic form factors of the nucleon. Note that in figs. 4 and 5
we also display the charge form factors calculated by replacing in eqs.(3.3-3.6) the isoscalar



and isovector combinations of the F Dirac nucleon form factor with the corresponding
expressions for the Gz Sachs parametrization. In contrast to what found for the magnetic
form factors of the three-body nuclei [3], the difference in the results obtained by using F;
or Gg is not sigﬁiﬁca.nt, due to the predominantly isoscalar character of the PS, V and w
charge contributions.

The theoretical uncertainty caused by the lack of precise knowledge of the electromag-
netic form factor of the nucleon is illustrated in figs. 6 and 7, where the predicted charge
form factors of *H and 3He are given for a set of parametrizations of the electromagnetic
form factors of the nucleon . The results in figs. 6 and 7 have been obtained (as in figs.
4 and 5) with the form factor parametrization of ref. [35] (IJL) and the parametrizations
of ref. [38] (H) and (39] (GK). In addition we show the results obtained with the simple
dipole form for all the electromagnetic form factors of the nucleon (D). Note that F is
used in eqs.(3.3-3.6). The differences between the different form factor parametrizations
appear in the charge form factor of the trinucleons only above 4 fm~1. If one considers
both the *H and 3He charge form factors simultaneously the best overall agreement with
the empirical values is obtained with the IJL form factor [35]. The fact that when using this
form factor parametrization there is a slight underprediction above 7 fm™! is in our view
more likely to be due to missing three-body exchange charge density corrections and/or
missing nonobvious relativistic corrections than a reflection on the quality of the nucleon
form factor parametrization.

For completeness we in figs. 8 and 9 show the individual contributions from the differ-
ent components of the charge density operator to the isoscalar and isovector combinations
of the charge form factors of 2H and 3He. The results reveal that at low and interme-
diate values of momentum transfer the (generalized) pion- and p-meson exchange charge
operators (3.3) and (3.4) ( with the replacements (3.5) ) are by far the most important
two-body terms. It should be noted here that these terms do not contain in the present
approach any adjustable parameters. The 1/m? corrections to the single-nucleon charge
operator ( the Darwin-Foldy and spin-orbit terms labeled collectively as DF-SO in figs.
8 and 9 ) also give a significant contribution. The p7my( isoscalar ) and wwy (isovector )
exchange charge operators (3.7) and (3.9) become important only at very large values of
momentum transfer. Finally it is worth noting, as already mentioned above, the dominant

isoscalar nature of the charge form factors of the three-nucleon isodoublet.

5. The charge form factor of 4He

The charge form factor of the a particle, obtained by the same methods as the charge

form factors of the trinucleons in the previous section, is shown in fig. 10. We have used
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the variational four-body wave function developed in ref, [2] for the Argonne-Urbana in-
teractions, and the IJL parametrization of the nucleon electromagnetic form factors [35].
The predicted charge form factor is in good agreement with the experimental data [4,40],
except in the region of the diffraction maximum between 3.5 and 4 fm~! . It should be
noted however that the empirical values shown in the figure do not fall on a smooth curve
in this region, which suggests the presence of a normalization discrepancy. The good fit to
the data at high momentum transfer is rather remarkable.

In fig. 11 we show the predictions as obtained with different parametrizations for the
electromagnetic form factors of the nucleon. In this case the spread between the results
obtained with the different form factor parametrizations is smaller than the corresponding
spread in the case of the three-body form factors (figs. 6 and 7). In fig. 12 we finally show the
explicit contributions from the different two-body exchange mechanisms. The nurnerically
most important exchange charge density operators are again the ( generalized ) pion and p-
meson exchange operators (3.3-3.5) . The isoscalar prv exchange charge density operator
(3.7) gives noticeable a contribution only at the highest values of momentum transfer

considered.

6. Discussion

The goals of this work were to analyze the charge form factors of the bound three-
and four-nucleon systems with the variational wave functions that are obtained by us-
ing the Argonne v;4 two-nucleon and Urbana-VII three-nucleon interactions. The results
reveal the well known impossibility of explaining the empirical charge form factors at in-
termediate values of momentum transfer without including contributions from two-body
- exchange mechanisms [3,5,6,36,37,41]. With inclusion of the contributions from the two-
body exchange charge density operators the results obtained here are however in remark-
able agreement with the experimental data. The main theoretical uncertainty appears to
be the spread among the form factors predicted with different parametrizations of the
nucleon electromagnetic form factors.

The present study of the charge form factors and the recent one of the 2H and 3He
magnetic form factors [3] show that it is possible to obtain remarkably good predictions
for all the elastic electromagnetic structure functions of the bound three- and four-nucleon
systems by using the Argonne v;; model for the nucleon-nucleon interaction, once the
irreducible two-body exchange current effects are included. We note here that similar
calculations using the Urbana v;4 two-nucleon interaction were not in agreement with the
measured magnetic form factors [3]. It should be pointed out however that the theoretical
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basis for the exchange current density operators that contribute to the magnetic form
factors of the trinucleons is much stronger than that for the presently considered exchange
charge density operators, the most important of which are of the same order of magnitude
as typical relativistic corrections.

The qualitatively most important result of this investigation is however the fact that
it is possible to explain the elastic form factors of the three- and four-nucleon systems
very well within the conventional quantum mechanical framework based on nonrelativistic
nucleon wave functions, once the non-nucleonic degrees of freedom are taken into account
in terms of effective two-body exchange current and charge density operators.

We gratefully acknowledge the support of the U.S. Department of Energy through
CEBATFT and by the National Science Foundation via grant PHY84-15064. The calculations
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XMP supercomputer of the National Center for Super-computing Applications at Urbana-
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Figure Captions

Pion exchange contributions to the nuclear charge density operator.

Meson exchange diagrams that involve the Born terms in the relativistic amplitudes
for photoproduction of virtual mesons.

The pry and wmy terms in the two-body charge density operator.

The charge form factor of 2H, as function of the four-momentum transfer, in the im-
pulse approximation (IA) and with inclusion of the two-body exchange charge opera-
tors, and of the Darwin-Foldy and spin-orbit corrections to the single-nucleon charge
operator ( IA+MEC(F}) ); the results have been obtained with the Iachello-Jackson-
Lande parametrization of the nucleon electromagnetic form factors. The curve labeled
IA+MEC(GEg) has been obtained by using the Sachs from factor Gg ( instead of F})
in the PS5, V and w charge operators.

Same as in fig. 4, but of 3He.

The charge form factor of 3H, as function of the four-momentum transfer, obtained
with different parametrizations of the nucleon electromagnetic form factors : dipole
(D), Gari-Krimpelmann {GK) , Héhler et al. (H) and Iachello-Jackson-Lande (IJL).
All curves include the meson exchange contributions, and the Darwin-Foldy and spin-
orbit corrections to the single-nucleon charge operator. The Dirac form factor F is
used in the PS, V and w charge operators.

Same as in fig. 6, but of 3He

The individual contributions to the isoscalar combination of the 3He and 3H charge
form factors, as functions of the four-momentum transfer, obtained with the Iachello-
Jackson-Lande parametrization of the nucleon electromagnetic form factors. The con-
tributions due to the PS, V, w and pry exchange charge operators, and the Darwin-
Foldy and spin-orbit corrections to the single-nucleon charge operator(DF-SO) are
displayed along with the impulse approximation (I1A).

The individual contributions to the isovector combination of the *He and 3H charge
form factors, as functions of the four-momentum transfer, obtained with the Iachello-
Jackson-Lande parametrization of the nucleon electromagnetic form factors. The con-
tributions due to the PS, V, w and wnry exchange charge operators, and the Darwin-
Foldy and spin-orbit corrections to the single-nucleon charge operator(DF-SO) are
displayed along with the impulse approximation (IA).

The charge form factor of He, as function of the four-momentum transfer, in the
impulse approximation (IA) and with inclusion of the two-body exchange charge oper-
ators, and of the Darwin-Foldy and spin-orbit corrections to the single-nucleon charge
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Fig.11

Fig.12

operator ( IA+MEC(F};) ); the results have been obtained with the Iachello-Jackson-
Lande parametrization of the electromagnetic nucleon form factors. The curve labeled
IA+MEC(Gg) has been obtained by using the Sachs from factor Gg ( instead of Fy)
in the PS, ¥V and w charge operators.

The charge form factor of *He, as function of the four-momentum transfer, obtained
with different parametrizations of the nucleon electromagnetic form factors : dipole
(D), Gari-Krimpelmann (GK) , Hahler et al. {H) and Iachello-Jackson-Lande (IJL).
All curves include the meson exchange contributions, and the Darwin-Foldy and spin-
orbit corrections to the single-nucleon charge operator. The Dirac form factor F is
used in the PS, V and w charge operators.

The individual contributions to the *He charge form factor, as functions of the four-
momentum transfer, obtained with the Iachello-Jackson-Lande parametrization of the
nucleon electromagnetic form factors. The contributions due to the PS, V, w and prvy
exchange charge operators, and the Darwin-Foldy and spin-orbit corrections to the
single-nucleon charge operator(DF-SO) are displayed along with the impulse approx-
imation (IA).
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